Improving the Catalytic Activity of Hyperthermophilic Pyrococcus horikoshii Prolidase for Detoxification of Organophosphorus Nerve Agents over a Broad Range of Temperatures

نویسندگان

  • Casey M. Theriot
  • Rebecca L. Semcer
  • Saumil S. Shah
  • Amy M. Grunden
چکیده

Prolidases hydrolyze Xaa-Pro dipeptides and can also cleave the P-F and P-O bonds found in organophosphorus (OP) compounds, including the nerve agents soman and sarin. Ph1prol (PH0974) has previously been isolated and characterized from Pyrococcus horikoshii and was shown to have higher catalytic activity over a broader pH range, higher affinity for metal, and increased thermostability compared to P. furiosus prolidase, Pfprol (PF1343). To obtain a better enzyme for OP nerve agent decontamination and to investigate the structural factors that may influence protein thermostability and thermoactivity, randomly mutated Ph1prol enzymes were prepared. Four Ph1prol mutants (A195T/G306S-, Y301C/K342N-, E127G/E252D-, and E36V-Ph1prol) were isolated which had greater thermostability and improved activity over a broader range of temperatures against Xaa-Pro dipeptides and OP nerve agents compared to wild type Pyrococcus prolidases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Final Report: Structural Analysis and Bioengineering of Thermostable Pyrococcus furiosus Prolidase for the Optimization of Organophosphorus Nerve Agent Detoxification

The aims of this project were to structurally study and bioengineer thermostable prolidases from Pyrococcus furiosus (Pf) and horikoshii (Ph) to enable their use for oganophosphorus nerve agent detoxification. Pf prolidase contains one dinuclear Co metal-center/monomer and has optimal activity at 100?C, exhibiting no activity without Co2+ or at temperatures <50?C. Requirement for metal ions is ...

متن کامل

Functional analysis of hyperthermophilic endocellulase from Pyrococcus horikoshii by crystallographic snapshots.

A hyperthermophilic membrane-related β-1,4-endoglucanase (family 5, cellulase) of the archaeon Pyrococcus horikoshii was found to be capable of hydrolysing cellulose at high temperatures. The hyperthermophilic cellulase has promise for applications in biomass utilization. To clarify its detailed function, we determined the crystal structures of mutants of the enzyme in complex with either the s...

متن کامل

Identification of nucleotide residues essential for RNase P activity from the hyperthermophilic archaeon Pyrococcus horikoshii OT3.

Ribonuclease P (RNase P) is involved in the processing of the 5' leader sequence of precursor tRNA (pre-tRNA). We have found that RNase P RNA (PhopRNA) and five proteins (PhoPop5, PhoRpp21, PhoRpp29, PhoRpp30, and PhoRpp38) reconstitute RNase P activity with enzymatic properties similar to those of the authentic ribozyme from the hyperthermophilic archaeon Pyrococcus horikoshii OT3. We report h...

متن کامل

Hyperthermostable endoglucanase from Pyrococcus horikoshii.

An endoglucanase homolog from the hyperthermophilic archaeon Pyrococcus horikoshii was expressed in Escherichia coli, and its enzymatic characteristics were examined. The expressed protein was a hyperthermostable endoglucanase which hydrolyzes celluloses, including Avicel and carboxymethyl cellulose, as well as beta-glucose oligomers. This enzyme is the first endoglucanase belonging to glycosid...

متن کامل

Characterization of native and recombinant forms of an unusual cobalt-dependent proline dipeptidase (prolidase) from the hyperthermophilic archaeon Pyrococcus furiosus.

Proline dipeptidase (prolidase) was purified from cell extracts of the proteolytic, hyperthermophilic archaeon Pyrococcus furiosus by multistep chromatography. The enzyme is a homodimer (39.4 kDa per subunit) and as purified contains one cobalt atom per subunit. Its catalytic activity also required the addition of Co2+ ions (Kd, 0.24 mM), indicating that the enzyme has a second metal ion bindin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2011  شماره 

صفحات  -

تاریخ انتشار 2011